Differential Operators and Flat Connections on a Riemann Surface

نویسنده

  • INDRANIL BISWAS
چکیده

We consider filtered holomorphic vector bundles on a compact Riemann surface X equipped with a holomorphic connection satisfying a certain transversality condition with respect to the filtration. If Q is a stable vector bundle of rank r and degree (1−genus(X))nr , then any holomorphic connection on the jet bundle Jn(Q) satisfies this transversality condition for the natural filtration of Jn(Q) defined by projections to lower-order jets. The vector bundle Jn(Q) admits holomorphic connection. The main result is the construction of a bijective correspondence between the space of all equivalence classes of holomorphic vector bundles on X with a filtration of length n together with a holomorphic connection satisfying the transversality condition and the space of all isomorphism classes of holomorphic differential operators of order n whose symbol is the identity map.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on measurable differential‎ ‎form spaces

In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.

متن کامل

Flat connections, geometric invariants and energy of harmonic functions on compact Riemann surfaces

This work grew out of an attempt to generalize the construction of Chern-Simons invariants. In this paper, we associate a geometric invariant to the space of flat connection on a SU(2)-bundle on a compact Riemann surface and relate it to the energy of harmonic functions on the surface. Our set up is as follows. Let G = SU(2) and M be a compact Riemann surface and E ~ M be the trivial G-bundle. ...

متن کامل

Multiple Saddle Connections on Flat Surfaces and the Principal Boundary of the Moduli Spaces of Quadratic Differentials

We describe typical degenerations of quadratic differentials thus describing “generic cusps” of the moduli space of meromorphic quadratic differentials with at most simple poles. The part of the boundary of the moduli space which does not arise from “generic” degenerations is often negligible in problems involving information on compactification of the moduli space. However, even for a typical ...

متن کامل

The Volume of the Moduli Space of Flat Connections on a Nonorientable 2-manifold

We compute the Riemannian volume of the moduli space of flat connections on a nonorientable 2-manifold, for a natural class of metrics. We also show that Witten’s volume formula for these moduli spaces may be derived using Haar measure, and we give a new proof of Witten’s volume formula for the moduli space of flat connections on a Riemann surface using Haar measure. ———————–

متن کامل

Good formal structures for flat meromorphic connections, I: Surfaces

We prove existence of good formal structures for flat meromorphic connections on surfaces after suitable blowing up; this verifies a conjecture of Sabbah, and extends a result of Mochizuki for algebraic connections. Our proof uses a numerical criterion, in terms of spectral behavior of differential operators, under which one can obtain a decomposition of a formal flat connection in arbitrary di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002